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The Mississippi Institute for Forest Inventory (MIFI) is the only cost-effective 

large-scale forest inventory system in the United States with sufficient precision for 

producing reliable volume/weight/biomass estimates for small working circle areas 

(procurement areas). When forest industry is recruited to Mississippi, proposed working 

circles may overlap existing boundaries of bordering states leaving a gap of inventory 

information, and a remote sensing-based system for augmenting missing ground 

inventory data is desirable. The feasibility of obtaining acceptable cubic foot volume 

estimates from a Landsat-derived volume estimation model (Wilkinson 2011) was 

assessed by: 1) an initial study to temporally validate Landsat-derived cubic foot volume 

outside bark to a pulpwood top estimates in comparison with MIFI ground truth 

inventory plot estimates at two separate time periods, and 2) re-developing a regression 

model based on remotely sensed imagery in combination with available MIFI plot data. 

Initial results failed to confirm the relationships shown in past research between radiance 

values and volume estimation. The complete lack of influence of radiance values in the 

model led to a re-assessment of volume estimation schemes. Data outlier trimming 
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manipulation was discovered to lead to false relationships with radiance values reported 

in past research. Two revised volume estimation models using age, average stand height, 

and trees per-acre and age and height alone as independent variables were found 

sufficient to explain variation of volume across the image. These results were used to 

develop a procedure for other remote sensing technologies that could produce data with 

sufficient precision for volume estimation where inventory data are sparse or non-

existent. 
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CHAPTER I 

INTRODUCTION 

Background 

Forestry industry in Mississippi was directly responsible for 2.42% of the state’s 

total employment, and forestry also provided 2.43 billion dollars of value-added in 2010 

(Dahal et al. 2013). The total direct, indirect, and induced output of the forest products 

industry in Mississippi was 10.38 billion dollars (Dahal et al. 2013). Because of the 

importance of forests to the economy, precise and accurate periodic estimates of timber 

volume by forest type are necessary for assessing sustainability of this valuable resource 

and for attracting forest product industries by insuring that proposed mills can maintain a 

continuous supply of raw material for a planned period of time. Currently, the Mississippi 

Institute for Forest Inventory (MIFI) stratifies the state’s forest land into three GIS strata 

(pine, hardwood, and mixed pine/hardwood) and randomly samples inventory plots in 

each stratum by county with a sampling error of ±15% at a minimum of a 90% 

confidence level (Parker et al. 2005). Mississippi is divided into five MIFI inventory 

regions (Figure 1) sampled on a rotating annual basis.  
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Figure 1 The counties of Mississippi separated into five designated Mississippi 
Institute for Forest Inventory (MIFI) inventory regions. 

 

Inventory data are accessed by the MIFI Dynamic Reporter software (Matney and 

Schultz 2011) to produce reports for volume/biomass/carbon/weights for areas within the 

boundaries of the state by county, multi-county, MIFI region, polygon, or working circles 

(Figure 2).  
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Figure 2 Mississippi Institute for Forest Inventory (MIFI) Dynamic Reporter 
interface displaying a 50-mile radius working circle in the MIFI Central 
Inventory Region that partially overlaps Alabama. A generated report is 
also displayed. 

 

Areas of polygons and working circles falling outside the state’s boundaries are 

excluded from reports. When working circles, or polygons, representing future or existing 

mill location areas are analyzed that cross state boundaries, there is a lack of MIFI data 

creating gaps in information. Lower precision and plot density US Forest Service (USFS) 

Forest Inventory and Analysis (FIA) data can be used, when available, for approximately 

matching time frames. Otherwise, the required data must be filled in by: 1) conducting 

expensive inventories, 2) mirroring adjacent inventory areas, or 3) utilizing remote 

sensing methodologies.  In the event that no appropriate time-matched ground data exist, 

procedures such as Landsat-based forest stratification by basal area (Schultz et al. 2006) 

and Landsat-derived stand structure estimation (Wilkinson 2011) showed promise for 
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completing volume estimation gaps using only remotely sensed data. This study reports 

the results of attempting to extend previous research and evaluates the practicality of 

applying remote sensing methods to expanding volume estimates into excluded areas 

with sufficient accuracy to supplement the accepted standard of ground truth plot data. 

Justification and Objective 

Forest land comprises approximately 65% of the total area of Mississippi, roughly 

19 million acres (Henderson et al. 2008) and is both economically and environmentally 

important to the state.  For these reasons, timely and precise inventories are needed to: 1) 

attract new forest products industries, 2) retain existing forest products industries, 3) 

provide forest management information, and 4) monitor forest change and sustainability. 

Because a comprehensive inventory is necessary to produce accurate and precise 

estimates, methods are needed to augment expensive and time-consuming field-based 

inventories when additional data are required due to data gaps. Past research (Wilkinson 

2011) suggests that the use of Landsat-derived data alone has potential for providing 

acceptable volumes when other more reliable inventory data is not available.  

This study was conducted to spatially and temporally validate the feasibility of 

using Landsat-derived layers (age, cover type, and pixel radiance value) to estimate cubic 

foot volume outside bark to a pulpwood top (CFVOBPW) of GIS-based forest strata in 

central Mississippi. A Landsat-derived model for estimating CFVOBPW (Wilkinson 

2011) was compared with field-based inventory (in-state MIFI ground truth plot data) 

data to determine if Landsat-derived estimates fell within an accepted standard of ground 

truth data. Once an acceptable standard of using the Landsat-derived volume estimation 

model for augmenting field-based inventories is established, forest resource industries 
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can assess the costs/risks and benefits of utilizing more timely and less costly information 

for investment decisions. 

Study Progression 

Based on research literature, all methods described in Chapter III were derived for 

projecting CFVOBPW from three layers: age using temporal image differencing change 

detection, forest cover type, and pixel radiance values. Early in the analysis it was 

apparent that radiance data were not contributing to the precision of volume estimation 

equations in any way. Chapter IV discusses the initial results and why radiance values did 

not provide additional predictive power to volume estimation models. Chapter V presents 

revised models for predicting volume. Any of the revised models could be reasonably 

certain of being successful in applying established procedures for estimating height and 

stand density using other existing remotely sensed technology such as lidar, 

multispectral, or high resolution satellite imagery. The results of revised volume 

prediction models from remotely sensed estimates of age, average stand total height, and 

stand density are discussed in Chapter VI. Recommended procedures based on study 

results and suggested model improvements are the basis for the discussion in Chapter VII 

and conclusions in Chapter VIII.  
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CHAPTER II 

LITERATURE REVIEW 

Currently, data for two forest inventory systems are being implemented in 

Mississippi: the United States Forest Service (USFS) Forest Inventory and Analysis 

(FIA) and the Mississippi Forestry Commission (MFC) Mississippi Institute for Forest 

Inventory (MIFI). The USFS FIA inventory system uses remotely sensed data to stratify 

forest/non-forest acreage and determine field plot location, while the MIFI inventory uses 

it to produce a stratified sampling frame (USDA FS 2011). The use of remotely sensed 

data in forest inventories is also beneficial for displaying the expanse of inventoried land 

as well as its availability. However, problems do exist in using these data, such as issues 

with error generation, data continuity, accuracy, and the ability to stratify images into 

meaningful forest inventory strata. 

Forest Inventory and Analysis (FIA) 

Inventory data provided by FIA is widely used in many analyses and publications 

on topics such as remote sensing and forest inventory (McRoberts et al. 2002), urban 

sprawl and production (Barlow et al. 1998), fire probabilities (Munn et al. 2003), and 

forest products (Abt et al. 2000). FIA’s congressional mandate is to provide national 

forest and range resource assessments, which include present and future potential of these 

lands for ensuring sustainable forestry practices (Avery and Burkhart 2002). FIA defines 
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commercial timberland, pasture or ranchland with trees, plantations, unproductive 

forested land, and reserves as forestland (McRoberts et al. 2002). These forestland areas 

must be greater than or equal to 1 acre and maintain a minimum cumulative crown width 

of 120 feet (McRoberts et al. 2002).  

 Based on a systematic grid of permanent plots, FIA continuously samples all 

forested lands across the nation (Avery and Burkhart 2002). The USFS systematically 

samples forest and non-forest at an intensity of a maximum of 20% of the plots in each 

state per year, based on a nationally uniform cell grid of interlocking hexagons (USDA 

FS 2011). One plot is selected in each hexagon that encompasses approximately 6000 

acres. In each standard field plot, a national set of ecological core measurements are 

collected by either federal, state, or contracted personnel (USDA FS 2011). FIA plots are 

systematically distributed as opposed to a random allocation (Crosby 2011). Avery and 

Burkhart (2002) noted that, while systematic sampling provides a very user-friendly 

sampling frame; this sampling design can have low accuracy if there is periodic variation. 

Avery and Burkhart (2002) also determined that estimating precision is problematic due 

to the fact that the sample is not random. Statistics gained from systematic samples are 

theoretically invalid because sample units do not have known probabilities of selection 

(Cochran 1977). 

 The USDA Forest Service Southern Research Station (SRS) has a total of 89,087 

FIA inventory plots (35,653 forested) that they monitor throughout the states of Texas, 

Oklahoma, Arkansas, Louisiana, Mississippi, Alabama, Kentucky, Tennessee, Georgia, 

South Carolina, Florida, North Carolina, Virginia, and the territory of Puerto Rico 

(USDA FS 2011). The last periodic inventory of Mississippi started in 2009 and currently 



www.manaraa.com

 

8 

has 28% of the current subcycle completed (SRS FIA 2014). In each cycle, FIA measures 

a subcycle that is 20% of the original sample. FIA samples the original plots to gauge 

growth and mortality and the original sample is then adjusted for that subcycle’s growth 

and mortality. The states that border Mississippi have cycles that began in 2009 

(Louisiana and Tennessee), 2010 (Arkansas), or 2012 (Alabama) (SRS FIA 2014). 

 FIA was established to provide state level estimates but its plot density is too low 

to precisely estimate forest volumes for counties or the relatively small working circle 

radii currently utilized by forest industry. Depending on the size of the county and 

percentage of forest cover, FIA sampling error on a county level basis in forested areas is 

approximately ± 40% (assuming: 1) a fairly low coefficient of variation of 30, 2) a 95% 

confidence interval, and 3) eight to ten forested plots per county per 1-year cycle as has 

been recorded in Mississippi). Over a typical working circle, sampling error would be 

increased due to the low number of plots in a relatively small inventory area. FIA plot 

intensity is only acceptable when large regions or areas are examined, which is the 

purpose of these data. 

Mississippi Institute for Forest Inventory (MIFI) 

 The lack of timely and accurate representation of the spatial distribution of timber 

resources at the county level in Mississippi created a need for the MIFI inventory system. 

A geospatially-based statewide database, beginning in Mississippi in 2004, was created to 

estimate forest volumes/biomass/carbon/weights by various categories. The objectives of 

the MIFI inventory are to: 1) conduct a forest inventory effective at the county level 

(±15% at a minimum of 90% confidence level) based on remote sensing, GIS, and GPS 

technologies, and 2) use computer technology to create original and derived data products 
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available with online technologies enabling users to estimate timber supplies and monitor 

change in forest resources (Parker et al. 2005). Early inventories were completed at the 

95% confidence level, but more recent inventories have been completed at the 90% 

confidence level due to lowered sampling intensities. MIFI’s combination of remote 

sensing and forest inventory field estimates are the first of its kind at this large scale 

(Riggs et al. 2013).  

 The MIFI inventory utilizes an optimized stratified simple random sampling 

scheme (Cochran 1977) on an annual rotating basis among five regions. The two stage 

MIFI sampling process involves: 1) analysis of remotely sensed land cover classification 

and change along with statistical validation, and 2) detailed forest field estimates for each 

rotating region (Riggs et al. 2013). Remotely sensed data allow for the random allocation 

of sampling plots within forest GIS strata (pine, hardwood, and mixed pine/hardwood) 

creating the sampling frame for field-based estimates. One-fifth acre plots are assigned 

random locations based on forest type classification imagery (Riggs et al. 2013) and stand 

individual tree measurements are taken within 1/5-, 1/10-, and 1/20-acre concentric plots 

according to product classes sawtimber/pole/veneer, pulpwood, and non-merchantable, 

respectively (Riggs et al. 2013). One-hundredth acre subplots are used to measure 

reproduction for assessing future site stocking (Riggs et al. 2013). By combining both 

remote sensing technology and forest field inventory estimates, MIFI not only estimates 

how much volume is present but where that volume is located in Mississippi (Riggs et al. 

2013). Imagery-based products from this combination of remote sensing and forest field 

inventory estimates provide an integration of forest age, land cover classification, and 

forest cover and composition (pine, hardwood, mixed pine-hardwood). 
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Remote Sensing in Forest Inventories 

 The National Space and Aeronautics Administration (NASA) Landsat program 

has low resolution satellite imagery available from 1972 to the present. The Landsat 

Thematic Mapper (TM) sensor system has been operational since 1982, and its higher 

spectral and spatial resolution imagery supplanted imagery from the previous sensor 

system that had been available since 1972, Landsat Multispectral Scanner (MSS) 

(Verbyla 1995). Seven Landsat satellites have become operational. However, during 

2011-2013, Landsat 7’s ETM+ sensor had a scan line corrector (SLC) problem. Also 

during this time Landsat 8 had not launched, thus leaving Landsat 5 and its TM sensor as 

the only reliable source of Landsat data during this period. The use of Landsat imagery 

keeps costs low while providing a large volume of information (Heit and Shortreid 1991) 

and is well-suited for large-scale forest inventory. 

 Remote sensing is acknowledged as an integral tool for the implementation of 

statistically efficient large-scale forest inventories (Wilkinson 2011). Remote sensing has 

been used for national forest inventories to produce estimates including forest area, 

volume, condition, growth, mortality, removals, trends, and health (McRoberts and 

Tomppo 2007). It is a preferred method for forest classification and creation of forest 

sampling frame strata for large-scale inventories because it is far less expensive than 

ground observations and measurements (Schultz et al. 2006). Remotely sensed data can 

significantly reduce field travel costs; particularly eliminating time wasted by traveling to 

sites with no forest cover or forest land use (McRoberts and Tomppo 2007).  

 Remotely sensed satellite imagery allows different temporal resolutions due to 

time-lapse sequencing, which permits tracking of land cover changes over time and 
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derivation of forest age (Collins et al. 2005). The ability to track current and temporal 

changes in forest stands provides a library of information that is easily accessible via 

spatial databases (Wilkinson 2011). Repeated time-series datasets provide vast quantities 

of information to base decision making over multiple time periods (Collins et al. 2005). 

 Forest classification is one of the most frequent uses for satellite data (Iverson et 

al. 1989). Remotely sensed satellite imagery can assist forestland owners and natural 

resource managers track forest age, type, composition, biomass, and productivity (Iverson 

et al. 1989). Ecological information such as landscape change, landscape patterns related 

to biological or physical phenomena, and the physiological processes of forest canopies 

can be gathered and/or modeled (Iverson et al. 1989). Mid-IR bands have proven to be 

indicators of maturity in forest canopies (Wilkinson 2011).  

 Other researchers have used Landsat TM imagery in conjunction with large scale 

forest inventory, but with limited results. Bauer et al. (1994) concluded that their 

estimates of acreage of different forest cover types at the survey level (88 ac) was 3% less 

than independent FIA estimates. At the county level, agreement between their results and 

FIA estimates ranged between -5 and 3.9%, and these differences are the result of 

differences in approach to sampling scheme as well as the complexity of the landscape.  

Remotely Sensed Volume Estimation 

 Gemmell (1995) studied the use of Landsat TM data in a mixed coniferous forest 

in southeast British Columbia and found that, at a scale of 0.25 ha, sampling using 

Landsat TM data had limited use for predicting volume due to issues of spatial gaps, 

density, registration errors, and background reflectance. The author found that volume 

estimation may vary due to spatial scale, terrain, stand homogeneity, and other site 
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characteristics. Because of these issues, the author suggested biophysical characteristic 

site assessment matched to the variable of prediction prior to the study might aid in 

selecting the correct method of image analysis. Trotter et al. (1997) stated that their 

multiple least squares regression model only explained 30% of the variance in timber 

volume (root mean square error = 100 m3ha-1). They concluded that Landsat TM bands 3 

and 4 had the highest correlation with timber volume. The relationship between Landsat 

TM data and timber volume was significant but weak at the pixel scale, and they 

concluded, by spatially averaging regression or non-parametric line fitting results, that 

acceptable estimates were derived at the forest-stand scale (about 40 ha) (root mean 

square error = 41 and 46 m3ha-1) (Trotter et al. 1997).  

 Tokola and Heikkila (1997) studied a 2280 ha forest stand in eastern Finland and 

estimated total mean volume using satellite imagery, site quality maps, and field sample 

plot data. They found a relative error of 14% for 50 ha areas and a relative error of 17.4% 

for a regular farm forest holding (30 ha) (Tokola and Heikkila 1997). They also found 

that only the volume of the dominant species was within the 20% relative error they were 

seeking for acceptable accuracy (Tokola and Heikkila 1997). Overall, they found their 

results to be suitable to forested areas in terms of assessing total volume, but not for stand 

timber management planning due to a high relative error, 55.1%, in individual species 

estimates (Tokola and Heikkila 1997). Makela and Pekkarinen (2004) found restricted 

applicability when using low resolution satellite imagery, such as Landsat, to estimate 

stand parameters in small stands. Landsat TM data could be successful in strategic 

management planning at the regional level (Makela and Pekkarinen 2004). They 

concluded that, due to forest fragmentation and small sizes of ownership, the methods 
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they used would be more suitable for larger homogenous stands; and if stand level 

accuracy is needed, aerial photographs or high resolution imagery would provide better 

data (Makela and Pekkarinen 2004).  

Shortcomings of Remote Sensing Related to Forest Volume Prediction  

Because accuracy and precision are essential to a good forest inventory, any 

derived imagery used in volume prediction must be held to acceptable standards of 

accuracy and precision. Problems were presented in past research that must be addressed. 

Probabilistic Problems of Change Detection in Long Sequences and Periods 

 When using any remotely sensed derived estimate that encompasses multiple time 

periods, the probability that error will appear greatly increases with time. Assume that the 

probability of correctly classifying presence/absence, or forest/non-forest, on a single 

pixel is𝜌; and, assuming independence of errors between pixels and time, the probability 

that a sequence of pixels will be correct is𝜌𝑛, with n being equal to the number of years 

in the sequence. For example, if 𝜌 = 0.95 and𝑛 = 34, the probability of a correct change 

detection is𝜌34 = 0.17. This probability calculation demonstrates that the error 

probabilities increase exponentially with time.  

 For example, a change detection project uses 34 years of Landsat imagery data 

(Landsat imagery is assessed from 1972 to 2006) to determine forest age. If each image 

produced has a confidence level of 95% of correctly classifying pixels, then a 0.05 

probability exists of misclassification. However, if all 34 years are used to classify pixels 

as forest or non-forest in the determination of forest age, then the probability of making at 

least one error is actually 0.83 (0.83= 1- ρ34= 1- 0.17). This means the probability of 
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producing change detection error in a long sequence is almost a certainty. From one time 

period to the next, the 0.05 statistical confidence level can be achieved, but the addition 

of multiple time periods leads to a significant increase in error and an almost certain 

misclassification. 

 Collins et al. (2005) found moderate results when assessing post classification 

comparison techniques and temporal image differencing of Landsat data to determine 

forest age classes for the MIFI inventory, and they concluded that their accuracy 

assessment methods were less definitive than the more robust ground and photo 

interpretative techniques. Collins et al. (2005) also noted that future studies could benefit 

from using their techniques as a base for change detection in Mississippi forests. 

Problems Associated with Data 

Data Integrity 

 To construct estimates applicable to a population, representative samples with 

known probabilities of selection must be obtained from the target population (Cochran 

1977). Problems arise in studies when data, more specifically data outliers, are repeatedly 

trimmed from the representative sample at one project stage to the next leading to false 

relationships. This type of trimming can introduce bias into the dataset because the 

trimmed dataset is no longer a representative sample of its target population (i.e. the 

sample units probabilities are not known), and there may be an appearance of variation 

that may not reflect what is naturally occurring in the study. The maximum number of 

sample data points should always be included in the estimating equations. Only extreme 

outliers should be trimmed, and only one trimming should occur. Additional trimming of 

outliers and refitting of equations beyond the first pass begins to trim valid data points 
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from the dataset, and the resulting equation is no longer representative of the originally 

drawn random sample. 

Data Preparation, Manipulation and Storage 

 Procedures must be documented in detail to preserve data integrity and continuity 

over the span of a research or operational project and across data managers. 

Miscommunication or lack of information in projects and processes based on large 

quantities of stored images and their derived products, like in remote sensing and spatial 

analysis, can cause major problems at any stage of analysis. Regular maintenance and 

updating of detailed and ordered records allows the smooth transition of data from one 

scientist to the next (within or between project time frames). 

Issues of Sampling Error 

 When FIA resamples their plots, they take a 20% subcycle of growth and 

mortality from the original sample, and then re-estimate the original sample. This is a 

sample of a sample. With bias already existing in the data, due to a systematic sampling 

scheme that does not allow for random sampling, sampling from the pre-existing sample 

only adds more bias to results and can cause results that do not reflect the actual existing 

forest structure. 

Registration/Georectification/Classification Issues (Effects on Accuracy of 
forest/non-forest) 

 Remotely sensed imagery passes through levels of processing before ending up as 

a derived image containing data. The images are corrected and rectified for atmospheric 

degradation, and some images may also be re-projected, subsetted, and/or geometrically 
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corrected by re-sampling (Campbell and Wynne 2011). Ground control points (GCPs) are 

established to assess and statistically adjust image spatial accuracy (Campbell and Wynne 

2011). From that point, the image is then classified using spatial or geostatistical 

processes such as clustering. Errors are introduced whenever classification is involved 

(Campbell and Wynne 2011). Reflectance values from the sensor are converted from 

digital number (DN) values to radiance values to be related from one image to another 

(Campbell and Wynne 2011). Remotely sensed data thus provides a snapshot of spectral 

values at a specific spatial and temporal scale; and any method-produced errors 

introduced by the researcher can affect the usefulness of derived data (Jensen 2000).  

 Registration between images can lead to misclassification. Boundaries among 

different landscape level elements can cause edge effects, which lead to misregistration in 

the scanner (Campbell and Wynne 2011). These errors will be systematic, not random, 

and spatially related when occurring on edges or in patches of the image (Campbell and 

Wynne 2011). Ground truth observation is the only way to truly identify these pixels and 

give them an accurate classification and avoid error. 

 Because there is no way to determine when change actually occurred between two 

images in the sequence, midpoint values of dates between scenes where change occurred 

are used to compensate for this problem (Collins et al. 2005). Assumptions (like the 

midpoint designation) made by the user influence overall accuracy, because these 

assumptions affect how the change is detected (Collins et al. 2005). 

Summary 

Mississippi’s two available forest inventory systems, FIA and MIFI, have 

different sampling schemes, intensities, and applications outside state boundaries. The 
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FIA inventory could potentially be utilized for analyses crossing political boundaries, and 

the MIFI inventory, only applicable within state boundaries, provides more precise 

estimates for smaller working circle areas.  

In an effort to replace or supplement costly field data in large scale inventories, 

researchers have developed models for predicting inventory variables from remotely 

sensed data. Models have been developed for predicting forest volumes/biomass that can 

be used to stratify an image into meaningful strata and improve statistical efficiency. 

Efficiency results from the difference created among strata means and variances that lead 

to lowered sampling error (Cochran 1977).  Remote sensing data have been used 

advantageously for predicting forested acreages for regional management planning; 

however, they have shown limited capabilities when applied to forest inventory 

estimation models. Data characteristics such as landscape and terrain fragmentation, 

spatial gaps, and stand density have all proved problematic in the development of forest 

volumes/biomass models from low-resolution Landsat TM imagery. Further research is 

needed to more fully explore the relationship between remotely sensed data and forest 

volume estimation models.  

 The extensibility provided by a solely Landsat TM based model (Wilkinson 2011) 

has the potential for both 1) offsetting the large cost of ground based large-scale forest 

inventories, and 2) having a model that falls within acceptable accuracy standards that 

can also be applicable over existing political boundaries. If such a model can be both 

spatially and temporally validated, there could be many opportunities for its cogent 

application in many other geospatial projects and methods. The high sampling intensity 

of the MIFI inventory provides an excellent platform for further investigating the 
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relationship between plot and remotely sensed attributes. A MIFI inventory has a 

sampling error of less than 7.5% on a 50-mile radius working circle at a minimum 90% 

confidence level.
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CHAPTER III 

INITIAL STUDY METHODS 

Planning and Study Area 

Data gained from satellite imagery can potentially reduce the costs and time 

associated with ground-based forest inventories; however, for satellite imagery to provide 

reliable forest inventory data, it must produce consistent results both spatially and 

temporally (from one time period to the next). The basis for this initial study was to 

assess the feasibility of Landsat-derived imagery for producing consistent temporal 

volume estimates. A study was initiated to temporally validate Landsat-derived cubic foot 

volume outside bark to a pulpwood top (CFVOBPW) estimates by comparing them to 

MIFI field-based CFVOBPW estimates in two separate time periods. Model performance 

of a 1999 MIFI pilot study of four counties (Choctaw, Clay, Oktibbeha, and Winston) in 

central Mississippi was compared to 2006 MIFI Central Inventory Region and 2007 

North Inventory Region data to establish a standard on which to evaluate temporal 

validity for Landsat-based estimations.  
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Figure 3 The four county study area located in central Mississippi. 

 

Pixel radiance values, forest age, and forest cover data were derived from two 

Landsat Thematic Mapper (TM) images (1999 and 2006) that contained Choctaw, Clay, 

Oktibbeha, and Winston counties in central Mississippi (Figure 3). These data were then 

compared with field inventory data from MIFI inventories for 1999 and 2006 (Clay 

County 2007). These counties provide a temporal link in the data because both ground 
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truth plot estimates and Landsat-based estimates were available for these counties in 

these specific years. The hypothesis of the initial phase of study was that Landsat-based 

estimates would fall within ± 20% of MIFI field-based ground truth estimates. 

Data 

MIFI Inventory Data 

CFVOBPW was selected for comparing MIFI inventory and Landsat-based 

volume estimates because it was the MIFI inventory target/design variable and exhibited 

the least amount of variation among volume estimates. MIFI CFVOBPW estimates were 

obtained for four Mississippi counties (Choctaw, Clay, Oktibbeha, and Winston) 

inventoried in the 1999 pilot study (Parker et al. 2005) and re-inventoried in the 2006 

MIFI Central Inventory Region (for Choctaw, Oktibbeha, and Winston counties) (Glass 

2007) and the 2007 MIFI North Inventory Region (for Clay County) (Glass 2008). 

Choctaw, Oktibbeha, and Winston counties were placed in the Central Inventory Region 

while Clay County was placed in the North Inventory Region as it was inventoried in a 

different annual rotation year.  

MIFI CFVOBPW estimates for the four counties and two time periods were 

obtained from Mississippi Forest Inventory Dynamic Reporter Version 7 software 

(Matney and Schultz 2011) available through the Mississippi State University Forest and 

Wildlife Research Center (FWRC) and downloadable from www.timbercruise.com 

(Download Center-Desktop-Other Solutions-Mississippi Institute of Forest Inventory 

Dynamic Inventory Reporter). Dynamic Reporter forest type and species group report 

selections were made using criteria similar to those employed by MIFI in determining 

GIS forest cover type sampling strata. The pine stratum was specified as consisting of all 
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species groups within all Society of American Foresters (SAF) forest types that were 

solely composed of pine. The hardwood stratum was specified as consisting of all species 

groups within all SAF forest types that were hardwood only. There were too few MIFI 

plots (n = 15) containing mixed pine and hardwood SAF forest types for a confident 

comparison of Landsat-derived and MIFI volume estimates (Wilkinson 2011). A 

minimum merchantable GIS age of 10 was used for both pine and hardwood, and non-

merchantable plots (non-forest, sub-merchantable, and regeneration) were excluded.  

Landsat Thematic Mapper (TM) Data 

Techniques used for deriving volume data from Landsat TM imagery were 

modified from Wilkinson (2011). Both 1999 and 2006 image data sets were 30-meter 

resolution in the Mississippi Transverse Mercator (MSTM) projection. Age, forest type, 

and radiance layers were derived from the imagery and subset to the four-county study 

area (Figure 4). These derived image layers were used as independent variables in 

hardwood and pine stratum models.  
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Figure 4 The four county study area represented in the three Landsat-derived layers 
(left to right: age, forest cover type, and radiance values) used in estimating 
cubic foot volume outside bark to a pulpwood top (CFVOBPW). 

 

Forest and non-forest cover type distinctions were made using approximately 300 

clusters in unsupervised classification (Collins et al. 2005). Age layers for 1999 and 2006 

were constructed from a sequence of 14 times, representing every third year, from 1972 

to 2006. Initially, age layers created in ERDAS Imagine® 8.7 by Wilkinson (2011) were 

used to determine GIS ages assigned to pixels.  Examination of the age distribution from 

the Wilkinson (2011) image showed a disproportionate number of young ages (skewed to 

the left) and missing age gaps (Figure 5). Further examination of plot volume values 

versus assigned GIS ages showed that a larger proportion of young stands had higher 

volumes than would be possible (Figure 6).  
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Figure 5 Age distribution for Mississippi Institute for Forest Inventory (MIFI) 
Central Inventory Region pine data from temporal image differencing 
change detection methods in Wilkinson (2011). 

 

 

Figure 6 A scatterplot of volume versus age of Mississippi Institute for Forest 
Inventory (MIFI) Central Inventory Region pine data from Wilkinson 
(2011). 
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These findings suggested that false non-forest/harvest designations were being 

made in the change detection system and were generating false young stand ages. It was 

concluded that the algorithm used to generate age layers was flawed, and not being able 

to determine the exact algorithm used, a new one was created with Microsoft Visual 

Studio® 2008 Visual C++ ® available from 

www.timbercruise.com/Utility/AgeLayerAlgorithm.zip. 

 The forest age predicting algorithm involved comparing forest/non-forest 

values for the same pixel over a time ordered sequence of multiple images. The ERDAS 

Imagine® 2010 forest/non-forest layer was converted to standard binary raster format for 

high speed processing. This backward searching and forward processing algorithm 

constructed an array of forest/non-forest values for each pixel calculated over 2- to 3-year 

intervals from 1972 to 2012. The image year for each forest/non-forest pixel value was 

stored in a separate array. Beginning at the most recent time interval, the algorithm 

searched backward to find the first forested pixel value that was followed in time by a 

non-forested pixel value. The interval in years (2 or 3 years) between forested and non-

forested pixels was calculated from the separate array of image years and divided by two. 

Since the exact time of harvest (forest disappearance) within the time interval was 

unknown, dividing by two gave an average year that was designated as pixel base age 0. 

One year was then added to the age to avoid having plots with age 0. The algorithm then 

processed forward in time and added years to the base age until it reached the most recent 

time interval. If a non-forested condition was never found during the backward search, 

then age was indeterminate and, therefore, set to 40+ years. GIS age distribution (Figure 
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7) and GIS age-volume comparisons (Figure 8) were improved dramatically by the new 

algorithm. 

 

Figure 7 Age distribution for Mississippi Institute for Forest Inventory (MIFI) 
Central Inventory Region pine data from corrected change detection with 
Microsoft Visual Studio® 2008 Visual  C++ ® program. 
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Figure 8 A scatterplot of volume versus age of Mississippi Institute for Forest 
Inventory (MIFI) Central Inventory Region pine data from corrected 
change detection and volume/age relationships. 

 

Hardwood and pine forest type pixel classifications were made interpretatively 

using an 80% or greater hardwood or pine rule (Collins et al. 2005). Any forested pixel 

less than 80% was separated into the mixed category. The radiance layer was generated 

by converting pixel reflectance values to pixel radiance values with a procedure described 

in Chander et al. (2007) using ERDAS Imagine’s® Model Maker function.  

Volume Estimates 

Once Landsat-derived age, GIS forest cover type, and pixel radiance value layers 

were created, hardwood and pine CFVOBPW per-acre models (Equations 1 and 2) were 

constructed using techniques derived from Schultz et al. (2006).  

0.3476 0.3449 0.2654 0.0510 0.0756 0.2832 0.1747Pine CFVOBPW 22822.8 23600.6 5089.6 1 2 3 4 5AGE R R R R R AGE      (1) 
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0.00544 1.6721 4.1671 2.4279 4.8113 1.4272Hardwood CFVOBPW=316973 319999 13053.8 2 3 4 5AGE R R R R AGE     (2) 

Where: CFVOBPW = estimated cubic foot volume outside bark to a pulpwood top; AGE 

= age determined from a forest/non-forest change detection temporal sequence beginning 

in 1972; R1 = Landsat band 1 radiance; R2 = Landsat band 2 radiance; R3 = Landsat band 

3 radiance; R4 = Landsat band 4 radiance; R5 = Landsat band 5 radiance.  

The models are generalized power models with radiance and age as the independent 

variables and an additional power term involving age only to correct for the over/under 

prediction of the image model. Both power models were fitted with SAS® Version 8.0 

non-linear (NLIN) procedure using the Gauss-Newton iteration with CFVOBPW per-acre 

as the dependent variable. The power models achieved higher index of fit (1 minus the 

quantity of the error sum of squares divided by the total sum of squares), I2= 0.18 for pine 

and I2= 0.16 for hardwood, than other models tested. Final models were incorporated into 

a Microsoft Visual Studio® 2008 Visual C++ ® program to calculate average per-acre 

volume for the hardwood and pine GIS forest cover types. The sample estimates from the 

MIFI inventory were compared to the estimates produced by applying Equation 1 and 2 

on the imagery to calculate volume by GIS forest cover type of pine or hardwood. 
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CHAPTER IV 

INITIAL STUDY RESULTS 

MIFI 1999 CFVOBPW per-acre estimates were 2,607 and 2,380 for hardwood 

and pine cover classes, respectively, while Landsat-derived per-acre volume estimates 

were 3,808 and 1,978, respectively (Table 1). The Landsat hardwood estimate exceeded 

the hypothesized acceptable ± 20% sampling error while the Landsat pine cover class fell 

within the ± 20% sampling error. MIFI 2006 CFVOBPW per-acre estimates were 2,525 

for hardwood and 2,064 for pine cover classes. Landsat per-acre volume estimates were 

2,477 and 2,091 for hardwood and pine cover classes, respectively. Both Landsat 

estimates were within 2 percentage points of the MIFI estimates, well within the 

hypothesized ± 20% sampling error. 
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Table 1 Generalized power model index of fit (I2), Mississippi Institute for Forest 
Inventory (MIFI) field inventory (±15% acceptable sampling range at the 
95% confidence interval) cubic foot volume outside bark to a pulpwood top 
(CFVOBPW) per-acre estimations, Landsat-derived CFVOBPW per-acre 
estimations, and percent (%) difference comparisons. 

Forest cover 
/year I2   MIFI inventory 

Landsat-
derived   

% 
difference 

   
-------CFVOBPW ac-1------- 

  Hardwood 0.16 
      1999 

  
2607±521 

 
3808 

 
46.1 

2006/7 
  

2525±505 
 

2477 
 

1.9 
Pine 0.18 

      1999 
  

2380±476 
 

1978 
 

16.9 
2006/7     2064±413   2091   1.3 

 

Because the hardwood cover class CFVOBPW estimation could not be temporally 

validated, a detailed analysis of the prediction system and formulation of new methods 

was necessary. Contribution of radiance band information, change detection time 

interval, and outlier/trimming analysis were explored as possible weaknesses in the 

prediction system. 

Contribution of Radiance Band Information 

Besides age, radiance band values were the only other model inputs considered in 

examining the failure of CFVOBPW temporal validation.  Past research has shown 

positive relationships between volume estimation and band radiance values that were not 

achieved in this study. Power models used by Schultz et al. (2006) produced coefficients 

of variation (R2) for predicting basal area from pixel radiance greater than or equal to 

29.5 for all three GIS cover types.  The standard error of estimate was examined, and a 
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non-linear asymptotic z-test on the parameters was carried out to determine the degree of 

contribution that radiance values made in the prediction of CFVOBPW.  

Inclusion of the radiance value variables in the model did not reduce the standard 

error of estimate.  Their contribution to the model was less than 0.5% of the total 

variation.  None of the radiance band parameters were found significantly different from 

zero by a non-linear asymptotic z-test.  Thus, it was concluded that radiance values were 

not contributing to the prediction of CFVOBPW and formulation of a new model based 

on variables (age, height, and stand density) known to contribute to volume estimation 

and obtainable through additional remotely sensed technologies was deemed desirable.   

Change Detection Time Interval 

Because age was the most important variable in the prediction of CFVOBPW, 

each step in its calculation was examined beginning with the Landsat images and change 

detection algorithm.  Errors in the GIS age layer algorithm were found and addressed 

early in the study resulting in the creation of a Microsoft Visual Studio® 2008 Visual 

C++® age calculation algorithm available from 

www.timbercruise.com/Utility/AgeLayerAlgorithm.zip.  In the course of creating this 

algorithm, issues with the time interval of data used in change detection became evident.    

The probability of making an error in pixel forest/non-forest classification, and 

thus the calculation of forest age, is exponentially increased by the number of sequential 

images used in the calculation (1 − 𝜌𝑛), as previously discussed with 𝜌 = the probability 

of correctly classifying presence/absence, or forest/non-forest, on a single pixel and, 

assuming independence of errors between pixels and time, the probability that a sequence 

of pixels will be correct is 𝜌𝑛, with n being equal to the number of years in the sequence. 
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However, if classification errors in the sequence could be identified using a computer 

algorithm, automated error correction could be possible.  For example, if a series of 1’s 

represent the forested condition and 0’s represent non-forested, an annual series that 

contained designations like 1110111 might be construed as an error in the fourth 

sequence. This type of sequence could be reasonably assumed to include an error and be 

automatically corrected, since a forested condition using Landsat interpreted data would 

not be detected one year after a harvest.  Based on experience, it takes approximately five 

to six years for a harvested forest to be recognized as new forest.  However, this type of 

automatic correction could not be employed for this study because there were 2- to 3-year 

gaps between Landsat images used to construct forest age layers.  This meant, if a clear-

cut harvest occurred immediately following a recorded Landsat image, five years could 

elapse before the next forested (code of 1) image was recorded which is enough time for 

a new forest to be detected.  The 2- to 3-year image time interval in the database occurred 

both due to the time/cost of classifying images for the whole state and the ability to 

acquire cloud-free days in the leaf-on months in Mississippi.   

Change detection via temporal image differencing produced a volume result that 

fell outside the 90-95% confidence level targeted by MIFI. Using a multiple image 

change detection sequence over a 34-year time period produces a probability of 0.83 of 

making at least one error per pixel sequence. Assuming each age layer is independent of 

all other layers, an error correction analysis spanning five to six years between Landsat 

images that are classified on a 2- to 3-year basis is adequate time to allow harvest (forest 

disappearance) and regeneration detection over multiple time intervals or multiple 

locations.  Therefore, a distinction cannot be made between a legitimate 
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harvest/regeneration and a classification error.  Because of the coarse nature of the time 

interval (two to three years), detection and correction of forest/non-forest classification 

errors was not possible. Annual intervals between image data classification should be 

constructed to allow the development of proper error correction routines and thus 

increase the precision of volume estimates. 

Outlier and Trimming Analysis 

During the course of the detailed analysis of the prediction system, an attempt was 

made to reproduce the methods and results by Wilkinson (2011) and Schultz et al. (2006).  

It was observed that the Wilkinson (2011) MIFI plot dataset had plot observations 

trimmed (outliers eliminated from the dataset) from the original data set based on age and 

cover type classification (337 of 1485) before model analysis occurred. Trimming 

appeared to result in false regression relationships and biased estimates.  A large number 

of plots also exhibited erroneous volume/age relationships. Adding to these problems of 

missing or incorrect plot observations was the distribution of plot points. Wilkinson’s 

(2011) model analysis contained 416 pine plots out of 543 total plots, which is 77% of 

the total number plots. The GIS cover layer only displays 49% of the forested pixels as 

pine, which means an inordinate number of pine plots were selected. This result was also 

found for hardwood and mixed plot selection with only 18% of hardwood plots (37% of 

total forested pixels) and 5% of mixed plots (15% of forested pixels) used in model 

analysis. To further substantiate this observation, a data trimming analysis was designed 

as part of the next study phase.   

Study focus shifted from temporal and spatial validation to a refinement of data 

processing and integrity and the development of a revised volume estimation model to 
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produce precise results within an acceptable range of ground truth standards. The results 

of the initial study showed that the CFVOBPW model driver was age and that radiance 

values did not improve the model significantly.  Stand age, height, and density were 

investigated as model inputs because they are all known to contribute to volume 

estimation and have the potential for prediction from other forms of remotely sensed 

imagery such as lidar, multispectral, and high resolution imagery. 

 



www.manaraa.com

 

35 

CHAPTER V 

REASSESSMENT STUDY 

Objectives 

 Initial study results revealed the failure of temporal validation of a Landsat-

derived model to estimate CFVOBPW from age, cover type, and pixel radiance value 

layers in a four-county area in central Mississippi. Radiance band values did not 

contribute to the model.  However, to eliminate the case that model failure could have 

been due to some unknown characteristic in the four-county data, the same Landsat-

derived model was used to predict volume for the entire 18-county MIFI Central 

Inventory Region. 

 Secondly, formulation of a new model was conducted to establish the best 

possible relationship between remotely sensed image data and volume. The objective was 

to develop a volume prediction model from change detection derived forest age and 

height and trees per-acre inputs that could be derived from other remotely sensed data 

such as lidar, high resolution, or multi-spectral imagery.   

A third objective was to examine the effects of data trimming on precision and 

applicability that were observed during the initial study.  
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Methods 

Study Area 

Data from the MIFI Central Inventory Region 2006 inventory (Figure 9) were 

used as observed/ground truth data for all model development and testing.  

 

Figure 9 Eighteen counties, highlighted in yellow, within the Mississippi Institute 
for Forest Inventory (MIFI) Central Inventory Region. 
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The 18 MIFI Central Inventory Region counties (Attala, Carroll, Choctaw, 

Clarke, Jasper, Kemper, Lauderdale, Leake, Lowndes, Montgomery, Neshoba, Newton, 

Noxubee, Oktibbeha, Scott, Smith, Webster, and Winston) cover 6.9 million acres, of 

which 4.8 million were classified as having a designated forest cover type (Wilkinson 

2011). Of these 4.8 million acres classified as forest, roughly 49% are classified as pine, 

37% as hardwood, and 14% as mixed cover type (Wilkinson 2011). This area contains 

both private and public land, with four large parcels of public land including national 

forest (Bienville and Tombigbee National Forests), wildlife refuge (Sam D. Hamilton 

Noxubee Wildlife Refuge), and state owned lands (Mississippi State University John W. 

Starr Memorial Forest) (Wilkinson 2011). 

Data  

Based on results from the initial study, all MIFI plot data with improbable GIS 

age-volume relationship pairs were excluded from analysis.  Five hundred and eleven 

MIFI Central Inventory Region plots were used in three separate analyses: 1) the 

verification of the initial results of CFVOBPW estimation models from Landsat-derived 

age, cover type, and band radiance layers, 2) the development of revised CFVOBPW 

estimation models from inputs of GIS age and MIFI plot data (height and trees per-acre) 

that could be derived from other sources of remotely sensed data such as lidar, 

multispectral, or high resolution imagery, and 3) the effect of data trimming on precision 

and prediction. 

Landsat 5 Thematic Mapper (TM) imagery was downloaded from the US 

Geological Survey (USGS) Glovis interface (http://glovis.usgs.gov) and the layers were 

stacked and partitioned to the study area using ERDAS Imagine® 2010. Landsat bands 
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were obtained from a single image for path 22, row 37 with an acquisition date of May 

2006. The projection and datum for this image was Mississippi Traverse Mercator 

(MSTM) and North American Datum 1983 (NAD83). This one image contained the 

entire MIFI Central Inventory Region from which three image layers were then created: 

forest age, forest cover, and pixel radiance value. 

Imagery was processed in an identical manner to that outlined in the initial study. 

Ground truth plot data for individual tree estimates and forest cover data were obtained 

from randomly located 1/5-acre MIFI inventory plots (Riggs et al. 2013).  

Landsat-derived forest age classification of the MIFI Central Inventory Region 

was estimated in 2- or 3-year intervals over all operational Landsat years (1972-present) 

using temporal image differencing similar to Collins et al. (2005) but modified in the 

initial study by a Microsoft Visual Studio® 2008 Visual C++ ® available from 

www.timbercruise.com/Utility/AgeLayerAlgorithm.zip.  

Fifty-three of 511 total Landsat-derived change detected ages corresponding to 

MIFI ground truth plot data were error corrected. These errors were identified by 

comparing MIFI ground truth volumes to ages of stands with similar volumes and 

average diameters (Table 2). The sequence of forest/non-forest designations for MIFI plot 

pixels identified as errors was examined for logical consistency with ground truth 

volumes. Sequence errors were manually corrected. 
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Table 2 Guidelines for manual correction of forest ages, based on Mississippi 
Institute for Forest Inventory (MIFI) ground plot estimates. 

Age   Volume   Expected 
Range 

  
--------------------CFVOBPW ac-1------------------- 

10 
 

1000 
 

1000-1499 
15 

 
2000 

 
1500-2499 

20 
 

3000 
 

2500-3499 
30 

 
3500 

 
3500-3999 

40   4000   >4000 
 

Verification of Initial Findings 

Initial study temporal validation results showed that radiance band values did not 

contribute to volume estimation, and to verify this result, the scale of the study area was 

increased from multi-county (4 counties) to regional (18-county MIFI Central Inventory 

Region). Minitab®16 statistical software was used to evaluate the relationship of radiance 

values from individual bands and age (independent variables) with MIFI CFVOBPW (the 

dependent variable) and select the best performing model. Estimated volume was plotted 

against MIFI ground truth plot data as well as pixel radiance values in all individual 

bands, multiple interaction terms, and various standard indices that one might assume 

would have an effect on volume pixel radiance value data to display possible trends. 

Linear regressions were evaluated according to the combination of variables providing 

the best R-squared (R2) value. Variables were eliminated from models based on lack of 

contribution in the regression equation. 

Non-linear regression power models, similar to those used to estimate volume 

during temporal validation (Equations 1 and 2), were also evaluated using SAS® NLIN.  
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Revised Models 

Revised models for predicting volume were based on the inputs of MIFI ground 

truth plot observations of height and stand density (trees per-acre) together with Landsat-

derived age.  These variables and their interactions are known to have the strongest 

relationship to volume estimation as has been reported in growth and yield study 

literature (Avery and Burkhart 2002, Burkhart and Tome 2012, and Spurr 1952). Stand 

height, trees per-acre, and age can be estimated consistently from remotely sensed data 

(Evans et al. 2006, McCombs et al. 2003). MIFI input data were used for model 

construction but could be replaced in future studies with the same variables derived from 

remotely sensed data calibrated with ground truth values from plot data (McCombs et al. 

2003).   

 Landsat-derived age and MIFI volume data were sorted to evaluate data 

consistency in volume/age relationships and highlight possible misclassifications. Plots 

with uncorrectable forest/non-forest age sequencing were eliminated from the study (7% 

of total plots). Minitab®16 statistical software was used to create and evaluate regression 

models for estimating volume using combinations of stand age, height, trees per-acre, and 

their interactions. 

Trimming Analysis 

Results of previous studies utilizing Landsat imagery data in forest stand volume 

estimation were favorable (Wilkinson 2011, Schultz et al. 2006), but were not consistent 

with the initial findings of this study. A detailed analysis of why initial findings did not 

substantiate previous results, led to examination of the data that had been trimmed.  

Trimming appeared to have affected the resulting regression models.  
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A regression fitted to a dataset, returns the mean values of the independent 

variables; i.e. if every plot in the dataset were predicted, the original dataset plot means 

would be returned. If plot values are eliminated at random from the dataset, there should 

be little effect on the mean; however, if plots values are eliminated based on any non-

random procedure, the means will be affected.  If enough data points are trimmed 

because they are outliers (points with undue influence), then predicted plot means will be 

shifted away from the unbiased estimate. To examine to what degree regression 

estimations are affected by trimming outlier points to different levels, Minitab® 

regression outlier analysis was carried out in a repetitive regression-trimming process.  

Minitab® flags outliers during regression analysis based on a combination of leverage, 

Cook’s D, and DFITS tests (Minitab, Inc. 2009).  After each regression analysis, any data 

points identified as outliers were eliminated from the dataset and the regression was 

repeated until no more outliers were identified.  Number of trimmed points, R-squared 

(R2), root mean square error (RMSE), average CFVOBPW per-acre (Ῡ), percent 

difference in average CFVOBPW, and standard deviation were recorded after each 

regression in the iteration.  Separate analyses were conducted for each of the three GIS 

strata.   
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CHAPTER VI 

REASSESSMENT STUDY RESULTS 

Verification Results 

 No relationships between linear regression Landsat band pixel radiance value 

inputs (or combinations of band pixel radiance or vegetative indexes based off band pixel 

radiance input variables) and CFVOBPW were apparent from data scatterplots (Figures 

10, 11, and 12). Initial 4-county study results were verified in finding no added value in 

including radiance band variables in regressions predicting volume.    

 

Figure 10 Scatterplot of pine stratum cubic foot volume outside bark to a pulpwood 
top (CFVOBPW) versus Landsat band 5 (RB5) pixel radiance values for 
the Mississippi Institute for Forest Inventory (MIFI) Central Inventory 
Region. 
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Figure 11 Scatterplot of pine stratum cubic foot volume outside bark to a pulpwood 
top (CFVOBPW) versus a band combination of Landsat band 4 pixel 
radiance values multiplied by Landsat 5 pixel radiance values (45) for the 
Mississippi Institute for Forest Inventory (MIFI) Central Inventory Region. 

 

Figure 12 Scatterplot of pine stratum cubic foot volume outside bark to a pulpwood 
top (CFVOBPW) versus Normalized Difference Vegetation Index (NDVI) 
for the Mississippi Institute for Forest Inventory (MIFI) Central Inventory 
Region. 
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 Because Landsat pixel radiance value individual band layers, interactions, or 

standard indices displayed no significant influence on volume estimation models, 

attention was turned to developing models with alternative input variables known to have 

strong relationships to volume and that could also be replaced in future studies with data  

derived from remote sensing technologies.  

Revised Regression Model Results 

 Revised models for predicting volume were based on the inputs of MIFI ground 

truth plot observations of height and stand density (trees per-acre) together with Landsat-

derived age.  The best linear regression equation (Equation 3) for CFVOBPW estimation 

of the pine cover type was a combination of height, age, and stand density (trees per-acre) 

which produced an R-squared value of 58.5% and a standard error  of prediction of 0.698. 

 (3) 

Where: LNV = the natural log of estimated cubic foot volume outside bark to a pulpwood 

top, LNH = the natural log of the total average height of the plot, LNA = the natural log of 

the age of the plot, and LNTPA = the natural log of trees per-acre per plot. 

This regression model explained a majority (over one-half) of the variation in the data 

and contains all three variables identified as important in growth and yield study 

literature (Avery and Burkhart 2002, Burkhart and Tome 2012, and Spurr 1952). A 

second linear regression model (Equation 4), with height and age as input variables, also 

produced a significant result where R-squared explained over one-half of the variation in 

the inference population (51.7%), with a standard error of prediction of 0.751, but less 

than the 3-variable model. 
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  (4) 

Where: LNV = the natural log of estimated cubic foot volume outside bark to a pulpwood 

top, LNH = the natural log of the total average height of the plot and LNA = the natural 

log of the age of the plot. 

 In an additional attempt to utilize radiance band information in predicting volume, 

a model with inputs consisting of MIFI height, GIS age, and Landsat imagery Band 5 

pixel radiance values was developed for the pine cover type. This model explained over 

one-half of the variation in volume (52.2%); but Band 5 radiance data was not 

statistically significant at the 0.05 level. This was the only regression model with a 

variable involving pixel radiance values that showed any potential for contributing to 

volume estimation. 

 Radiance bands also did not contribute to hardwood cover type volume 

estimation.  The same combinations of MIFI and GIS age variables were significant in 

the hardwood regression models (Equations 5 and 6) as for the pine cover type. 

 (5) 

  (6) 

These regression volume estimation models produced lower precision (R-squared) than 

with the pine models (42.8% for Equation 5 and 35.9% for Equation 6), but produced 

lower standard errors of prediction of 0.665 and 0.702 respectively.  This result can most 

likely be attributed to greater variation in the size and shape of individual hardwood trees 

compared to pine trees. 
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 Results for the mixed cover type were comparable to the hardwood cover type. 

Linear regression volume estimation models produced lower R-squared values (41.1% 

for Equation 7 and 32.1% for Equation 8) than those for the pine cover type but were 

very similar to the hardwood cover type.  

 (7) 

  (8) 

The mixed cover type was expected to produce the lowest R-squared as a consequence of 

methods employed for grouping pixels (Collins et al. 2005) and because of the smaller 

number of observed plots. The standard error of prediction was highest in the mixed 

cover type (0.795 for Equation 7 and 0.847 for Equation 8). The mixed cover type 

contained all forested pixels that did not fit the pine or hardwood cover type 

requirements, thus leaving an assortment of pixels with higher variation.  

Data Trimming Results 

The linear regression volume estimation model with input variables height and 

age (Equations 4, 6, and 8) was selected to examine gains in precision when outlier plots 

are removed from the inference population. 

Minitab® identified a total of 38 outlier plots from 226 total pine plots, or 17% of 

the data after 5 regression-trimming iterations. Iterations continued until no outlier plots 

remained, and the final linear regression model (Equation 9) produced a significant 

improvement in precision (R2=65.6%) over the regression with untrimmed data 

(R2=51.7) and a significant increase in CFVOBPW per-acre estimates after 5 iterations 

(11.9% increase) (Table 3).  
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  (9) 

Table 3 Data trimming iterations for Mississippi Institute for Forest Inventory 
(MIFI) Central Inventory Region pine cover type data (n= 226) displaying 
precision changes in R2, root mean square error (RMSE), estimated cubic 
foot volume outside bark to a pulpwood top per-acre (Ῡ), percent change in 
Ῡ (% Ῡ), standard deviation (StDev), and removed and total plots. 

Iteration R2 RMSE 
 

Ῡ % Ῡ StDev 
 

Removed Total 
1 

 
51.7 0.751 

 
1732 0.0 1328 

 
10 216 

2 
 

60.3 0.570 
 

1767 2.0 1253 
 

13 203 
3 

 
61.6 0.486 

 
1847 6.7 1241 

 
7 196 

4 
 

63.1 0.447 
 

1888 9.0 1235 
 

7 189 
5 

 
65.6 0.416 

 
1937 11.9 1228 

 
0 189 

                  Total=37   
 

 A total of 219 hardwood cover type plots were available for analysis, of which a 

total of 50 were identified as outliers from iterative Minitab® outlier analysis, eliminating 

23% of the original data. Regression Equation 10 resulted from the final iteration.  

  (10) 

Trimming of outlier plot data eliminated almost one-quarter of the hardwood cover type 

plots from the total study area, which resulted in a significant precision increase (19.7%) 

in R-squared from 35.9% to 55.6% as well as a significant increase in CFVOBPW per-

acre (Table 4). 
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Table 4 Data trimming iterations for Mississippi Institute for Forest Inventory 
(MIFI) Central Inventory Region hardwood cover type data (n= 219) 
displaying precision changes in R2, root mean square error (RMSE), 
estimated cubic foot volume outside bark to a pulpwood top per-acre (Ῡ), 
percent change in Ῡ (% Ῡ), standard deviation (StDev), and removed and 
total plots. 

Iteration R2 RMSE 
 

Ῡ % Ῡ StDev 
 

Removed Total 
1 

 
35.9 0.702 

 
2191 0.0 1551 

 
14 205 

2 
 

44.2 0.545 
 

2242 2.3 1467 
 

15 190 
3 

 
49.9 0.462 

 
2333 6.5 1427 

 
9 181 

4 
 

54.2 0.412 
 

2328 6.3 1346 
 

5 176 
5 

 
56.2 0.392 

 
2324 6.1 1324 

 
2 174 

6 
 

55.6 0.390 
 

2343 6.9 1319 
 

0 174 
                  Total=45   

 

 The mixed cover type had the lowest number of initial plots (66) and was 

expected to show a significant increase in precision when outlier plot data were removed. 

Out of 66 plots, Minitab® flagged 12 as outliers or 19% of the total. The final regression 

model (Equation 11) produced a statistically significant increase in R-squared (25.9%), 

from 32.1% to 58%. 

  (11) 

The regression equation developed from the trimmed dataset explains almost twice as 

much volume variation as from the untrimmed dataset. The mixed cover type produced 

the most significant gains in precision and percent difference in CFVOBPW per-acre 

estimates (Table 5).  
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Table 5 Data trimming iterations for Mississippi Institute for Forest Inventory 
(MIFI) Central Inventory Region mixed cover type data (n= 66) displaying 
precision changes in R2, root mean square error (RMSE), estimated cubic 
foot volume outside bark to a pulpwood top per-acre (Ῡ), percent change in 
Ῡ (% Ῡ), standard deviation (StDev), and removed and total plots. 

Iteration R2 RMSE 
 

Ῡ % Ῡ StDev 
 

Removed Total 
1 

 
32.1 0.847 

 
2020 0.0 1393 

 
5 61 

2 
 

46.5 0.662 
 

2163 7.1 1351 
 

4 57 
3 

 
54.0 0.537 

 
2294 13.6 1300 

 
1 56 

4 
 

52.1 0.518 
 

2330 15.3 1282 
 

2 54 
5 

 
58.0 0.481 

 
2388 18.2 1269 

 
0 54 

                  Total=12   
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CHAPTER VII 

DISCUSSION 

Landsat-derived models based on age and pixel radiance value layers failed to 

estimate hardwood and pine CFVOBPW per-acre with sufficient precision (I2 = 0.16 for 

hardwood and I2 = 0.18 for pine) to discriminate volume differences among pixels during 

temporal validation. Pixel radiance values did not contribute to the model.  Because other 

researchers reported successful use of models that included  pixel radiance values in 

estimating per-acre volumes, negative results obtained for a MIFI 4-county area of 

Mississippi were verified for a much larger 18-county Central Inventory Region area. 

Detailed analyses were conducted on the calculation of age (the only other model input 

besides radiance values) that included the development of a Microsoft Visual Studio® 

2008 Visual C++ ® change detection algorithm as opposed to the algorithm used by 

Collins et al. (2005), Schultz et al. (2006), and Wilkinson (2011). A data outlier/trimming 

study found significant differences in volume estimation per-acre. A CFVOBPW 

estimation model was constructed from GIS age and MIFI plot variables that could 

conceivably be estimated from remotely sensed technologies such as lidar with sufficient 

precision to substitute for missing data in a MIFI inventory analysis.  
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Failure of Radiance Values to Predict Volume 

Inputs to initial study models (Equations 1 and 2) that failed to predict 

CFVOBPW were composed of Landsat radiance bands 1 – 5 and change detection 

derived age.  None of the six individual band pixel radiance value layers, interactions, or 

standard indices contributed to the prediction of volume. Band 4 was expected to exhibit 

the most influence because it has been reported as a predictor of vegetative leaf cover 

(Campbell and Wynne 2011) and possibly related to tree size. Band 5 has been reported 

as an indicator of vegetative moisture content (Campbell and Wynne 2011) and could, 

perhaps, be a relative measure of tree vigor.  However, the reflectance of energy from 

trees crowns as recorded by the Landsat TM sensor appears unrelated to per-acre tree 

volume (Figures 10 – 11). The case might be made that derived measures of crown size 

could contribute to volume estimation on an individual tree basis, but there was no 

expected link between these radiance band values and crown size or volume on a per-acre 

basis. 

Change Detection and Forest Age Determination 

Identification of age classification problems proved to be challenging. Issues 

associated with length of the interval between Landsat images, the change detection 

algorithm itself, and outlier trimmings were all investigated. Other possible problems 

such as errors caused by data clumping procedures (kernel, kriging or IDW, 

neighborhood functions) that can mask non-existent trends in pixel radiance values were 

avoided in this study.   

Calculation of the probability of classification error accumulated over a 34-year 

change detection period demonstrated that forest age estimation could be a significant 
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source of CFVOBPW model error.  The change detection process could be improved by 

annual Landsat imagery forest/non-forest classification as opposed to 2- to 3-year 

periods. Two- to three-year periods left data gaps too large to properly identify errors that 

could be automatically corrected. If an error were detected for a system that only 

classified age every two to three years, one to five years could elapse between when an 

actual harvest occurred and when it was detected. At that point, no determination could 

be made as to whether it was a legitimate error or a harvest.  Five years is sufficient time 

for a harvested area to be detected as regeneration. The long intervals between change 

detection evaluations prevent the development of proper error correction routines that 

could greatly increase the precision of volume estimates. 

It is often difficult to discover the exact methods of routines that are wholly or 

partially constructed in previous research or from within utilities contained in software 

packages such as ERDAS Imagine®. Datasets derived from these sources should always 

be analyzed for statistical and biological consistency before adaptation.  Age distributions 

from previous research could not be validated by known MIFI age distributions and age-

volume relationships (Figures 5 – 8); therefore, an alternative algorithm was constructed 

whose outputs are consistent with ground truth.  

When a problem arises, the tendency is to remove plots composed of young 

stands with high volume estimates. Erroneous age-volume relationships are apparent in 

young stands but cannot be delineated in older stands. Older stands could legitimately 

have high or low volumes and, without an error correction routine or ground truth plot 

inventory data, there is no appropriate basis for separating bad estimates from good ones. 
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Incorrectly removing stands with high volume can cause considerable bias in volume 

estimates. 

Outlier Trimming Analysis 

Manipulation of data by trimming outlier plots showed statistically significant 

increases in R-squared precision as well as significant increases in average volume per-

acre. It appeared that past researchers could have trimmed data sufficiently to produce 

artificial relationships between radiance values and volume. Excluding data points also 

created regression estimations that at the means of the independent variables do not 

predict the average plot volumes and are, therefore, biased predictors of volume for the 

derived image. This result was confirmed by the trend in significant gains in precision 

observed by trimming data to different levels for all GIS cover types. Problems in the 

determination of independent variables must be addressed rather than trimming outlier 

plots. The trimming analysis in Tables 3, 4, and 5 reveals the extent to which results can 

be affected once outliers are removed. The number of outliers, and thus the need for 

trimming outliers, may be greatly reduced once issues in calculating age from forest/non-

forest change detection methods are resolved.  

Volume Estimation Model 

Because models (Equations 1 and 2) based on radiance values failed to estimate 

volume, an approach was taken to build a model based on proven predictor variables 

identified from growth and yield studies that were also estimable from other remotely 

sensed technologies. Successful volume models were constructed for pine (R2 = 58.5%), 

hardwood (R2 = 42.8%), and mixed cover types (R2 = 41.1%) using age, height, and trees 
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per-acre as inputs. The linear regression models explained over half the variation in the 

pine data while only eliminating a minimum number of plots that were not correctable 

(7%). Using the maximum number of data points possible is essential for forest 

inventories and their associated models because the questions being answered by an 

inventory are “what is out there”, “how much of it is out there”, and “where is it” (Riggs 

et al. 2013). In order to obtain an unbiased estimate, the diversity of sites, stand densities, 

and species for the entire area under consideration must be fully represented in the data 

and used to allocate field inventories or create prediction models that meet stated 

precision goals.  

The volume prediction equations (Equations 3, 5, and 7) based on age, height, and 

trees per-acre derived from remotely sensed data can serve as the basis for future research 

involving  technologies such as lidar, multispectral, or high resolution imagery. 

Remote Sensing Technologies 

Much unexplained variance exists in remotely sensed imagery. The coarse 

resolution of Landsat TM data (30-meter) could lead to classification error and problems 

with precision (Gemmell 1995, Makela and Pekkarinen 2004). An issue with resolution 

arises with natural stand-level clumping of trees. At 30-meter resolution, the scale is 

beyond the individual canopy and the pixels capture groups of trees. Because in nature 

trees tend to clump together, the resolution of the Landsat imagery may be picking up 

pockets of hardwood or pockets of pine, but not sufficiently capturing or representing a 

mixed cover type that exists in the forest. This stand-level clumping causes an 

underestimation of the mixed cover type component, which may be more representative 

of certain areas than a pine or hardwood cover type designation. 
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The level of aggregation of pixel reflectance at the Landsat 30-meter resolution 

could cause a lack of relationship in the model. The resolution also becomes problematic 

when trying to compare open stands versus dense, closed canopy stands. The same 

volume could exist in both stands, but the pixel radiance values could be vastly different. 

These resolution scale issues lead to problems in precision and classification accuracy. 

Multiple image sequencing provides its own set of unique problems such as the 

variation interjected by changes in atmospheric conditions when a satellite sensor takes 

images of the same area at two different time periods. Weather, scanner malfunctions, 

atmospheric influence, misclassification, and algorithm issues are examples of issues 

involved in image classification. High resolution imagery, such as 1-meter National 

Agriculture Imaging Program (NAIP), provides a more detailed (1-meter as opposed to 

30-meter resolution of Landsat imagery) view of the landscape and individual attributes 

in images but with greater variability due to multiple days of acquisition. The use of this 

imagery could possibly help clarify the land cover under consideration, but higher 

resolution also brings its own level of complexity. An increase in resolution could lead to 

more misclassification of pixels due to spectral mixing and place more pixels in the 

mixed forest cover type (ex. pixel size being smaller than some hardwood canopies thus 

putting an individual tree in multiple pixels). Object-based classification would need to 

be conducted to identify the individual attributes of the image correctly. The advantages 

of high resolution imagery must be weighed against the disadvantages of increased data 

storage requirements, processing time, and greater processing capabilities.   

Combining lidar data, which provides a three dimensional view of the structure of 

trees in a stand or plot, with improved Landsat-derived age layers and MIFI ground truth 
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plot data could possibly provide a solution to accuracy and precision problems. With 

height, age, and stand density (trees per-acre) already explaining more than half of the 

variance, more precise height and stand density measurements gained from high accuracy 

lidar data can aid in model refinement. Lidar data has been used in estimation of 

individual tree and average stand height (Evans et al. 2006). Additional research into 

understanding shadowing from canopies, and the effect of only receiving partial 

reflectance from the lower parts of the stem (Campbell and Wynne 2011) could lead to 

more precise estimates of three dimensional volumes. Much of Mississippi, including the 

entire MIFI Central Inventory Region, currently has some form of lidar data available; 

however, most existing lidar data are not at the resolution necessary for individual tree 

measurements. Individual stem density combined with stand height (derived from 

elevation of ground and canopy) could provide reliable volume estimates over large areas 

(Evans et al. 2006). McCombs et al. (2003) reported that density can be estimated using 

lidar in combination with multispectral imagery for individual stem measurements. Lidar 

information alone has not been shown to provide precise volume estimates, but local 

ground truth plots, or similar data available through MIFI, can be used to calibrate data 

for better precision than field estimates alone (Evans et al. 2006). Parker and Evans 

(2009) also discussed some disadvantages and inherent bias in lidar data. Some bias is 

introduced because of the inability of the lidar sensor to consistently hit the terminal 

leader, which is more problematic in hardwoods than in conifers. In addition, midstory 

and understory trees may not register when hidden beneath a dominant canopy causing 

tree count bias.  
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The two primary considerations prohibiting lidar use in current large-scale forest 

inventory are cost and data density. Hummel et al. (2011) compared traditional stand 

inventories with lidar-based inventory at the stand level (30,000 ac), and they found that 

the cost and accuracy was not significantly different between the two inventory methods. 

Lidar-based inventory was close to three dollars per-acre at the stand level, but this 

number could be reduced to a more feasible estimate because there is an inverse 

relationship between number of acres and cost to acquire and process lidar data (Hummel 

et al. 2011). To provide timely and precise inventory estimates, lidar data would need to 

be refreshed every 5 years. This makes lidar-based forest inventory cost prohibitive until 

costs of acquiring and processing lidar can be reduced. Data density could become a 

problem with lidar-based inventory due to the large amount of data storage necessary for 

lidar returns. Hummel et al. (2011) reported a mean density of ground returns of 1.44 

points/m2, which is sufficient for western conifers but would be a higher density in 

southeastern forests. This larger density of ground returns translates to an extremely large 

amount of data when multiplied over a large-scale forest inventory in the southeastern 

United States. Appropriate storage space would also be required for archiving multiple 

years of large-scale forest inventory data. If costs can be reduced and proper storage and 

processing capabilities made available, lidar-based forest inventory could provide a 

remote sensing-based system for augmenting missing ground inventory data with 

sufficient precision. 

Remotely sensed height and trees per-acre estimates derived from lidar data 

combined with improved algorithms for Landsat-derived ages that are calibrated and 
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verified with existing MIFI ground truth data have the potential for significant gains in 

the precision of forest volume prediction. 
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CHAPTER VIII 

CONCLUSION 

The Mississippi Institute for Forest Inventory (MIFI) combines the use of 

remotely sensed imagery and field inventory plot measurements to provide the state with 

accurate, precise, and up-to-date forest inventory volume estimates. The state and its 

forest product industry investors can obtain detailed breakdowns of available volume and 

where that volume is located. USFS Forest Inventory and Analysis (FIA) inventory data 

are also available in Mississippi, but these data are sparse and contain potential bias 

because they are obtained from a systematic sampling scheme and not selected through a 

random sample of known probability (Cochran 1977). Remote sensing-based volume 

estimation would be desirable to supplement MIFI data when proposed working circles 

may overlap bordering state boundaries leaving a gap of inventory information or where 

there are missing ground inventory data. The feasibility of obtaining acceptable cubic 

foot volume estimates from a Landsat-derived volume estimation model (Wilkinson 

2011) was assessed. 

Landsat-derived volume estimation models proposed by Wilkinson (2011) could 

not be temporally validated. The relationship between band radiance values and volume 

estimation was not significant, contrary to results from previous studies. The failure of 

radiance values to make a significant contribution to volume estimation prompted further 

research into other possible methods of precisely estimating volume from remotely 
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sensed data. It was shown that, if growth and yield model independent variable 

requirements were used as inputs, 58% or more of volume variation in the inference 

population could be explained. Revised linear regression models included remotely 

sensed independent variable of age and MIFI ground truth plot independent variables of 

height and trees per-acre, and these independent variables were found sufficient to 

produce variation of volume across the image. Results supported abandoning 

development of volumetric relationships with radiance values and suggest focusing on 

models based on age obtained from refined change detection methods, height from lidar 

imagery, and density measures from a combination of lidar and multispectral or high 

resolution imagery. Future research should focus on developing low cost and practical 

methods of obtaining accurate and precise values of these variables from remotely sensed 

imagery. 

Exploration into the various sources of independent variable error in the models 

pointed to problems with temporal image differencing change detection used to calculate 

forest age, issues with misclassification of GIS cover type, and the lack of accounting for 

stand density and height in previous models. It was shown that the probability of 

generating errors in a forest/non-forest change detection sequence is exponentially 

increased by the number of sequential images used in the calculation. Also, an analysis of 

the time interval between images in change detection demonstrated that annual intervals 

between image data classification must exist to allow development of proper error 

correction routines and thus increase the precision of volume estimates.  

The dramatic change in estimated CFVOBPW per-acre volume observed in the 

analysis of data trimming of randomly sampled points demonstrated that trimming should 
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be avoided. A modest amount of data trimming resulted in unacceptably biased estimates. 

When a regression is developed from a random sample, instead of trimming observations 

with bad independent variables, an effort should be made to readdress and correct the bad 

independent variables. 

These results were used to develop a procedure that would produce sufficient 

precision for volume estimation where field inventory data are sparse or non-existent. 

Further research is required to determine if this procedure can be used with existing 

technologies on an image in two successive time periods to determine relative growth. 
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